skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thornton, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric aerosol and the cloud droplets and ice crystals that grow on them remain major sources of uncertainty in global climate models. A subset of aerosol, ice nucleating particles, catalyze the freezing of water droplets at temperatures warmer than −38 °C. Here we show that RuBisCO, one of the most abundant proteins in plants and phytoplankton, is one of the most efficient known immersion ice nucleating particles with a mean freezing temperature of −7.9 ± 0.3 °C. Further, we demonstrate RuBisCO is present in ambient continental aerosol where it can serve as an ice nucleating particle. Other biogenic molecules act as immersion ice nucleating particles, in the range of −19 to −26 °C. In addition, our results indicate heat denaturation is not a universal indicator of the proteinaceous origin of ice nucleating particles, suggesting current studies may fail to accurately quantify biological ice nucleating particle concentrations and their global importance. 
    more » « less
  2. Sea spray aerosol contains ice-nucleating particles (INPs), which affect the formation and properties of clouds. Here, we show that aerosols emitted from fast-growing marine phytoplankton produce effective immersion INPs, which nucleate at temperatures significantly warmer than the atmospheric homogeneous freezing (−38.0 ∘C) of pure water. Aerosol sampled over phytoplankton cultures grown in a Marine Aerosol Reference Tank (MART) induced nucleation and freezing at temperatures as high as −15.0 ∘C during exponential phytoplankton growth. This was observed in monospecific cultures representative of two major groups of phytoplankton, namely a cyanobacterium (Synechococcus elongatus) and a diatom (Thalassiosira weissflogii). Ice nucleation occurred at colder temperatures (−28.5 ∘C and below), which were not different from the freezing temperatures of procedural blanks, when the cultures were in the stationary or death phases of growth. Ice nucleation at warmer temperatures was associated with relatively high values of the maximum quantum yield of photosystem II (ΦPSII), an indicator of the physiological status of phytoplankton. High values of ΦPSII indicate the presence of cells with efficient photochemistry and greater potential for photosynthesis. For comparison, field measurements in the North Atlantic Ocean showed that high net growth rates of natural phytoplankton assemblages were associated with marine aerosol that acted as effective immersion INPs at relatively warm temperatures. Data were collected over 4 d at a sampling station maintained in the same water mass as the water column stabilized after deep mixing by a storm. Phytoplankton biomass and net phytoplankton growth rate (0.56 d−1) were greatest over the 24 h preceding the warmest mean ice nucleation temperature (−25.5 ∘C). Collectively, our laboratory and field observations indicate that phytoplankton physiological status is a useful predictor of effective INPs and more reliable than biomass or taxonomic affiliation. Ocean regions associated with fast phytoplankton growth, such as the North Atlantic during the annual spring bloom, may be significant sources of atmospheric INPs. 
    more » « less
  3. Abstract Congeneric species often share ecological niche space resulting in competitive interactions that either limit co-occurrence or lead to niche partitioning. Differences in fundamental nutritional niches mediated through character displacement or isolation during evolution are potential mechanisms that could explain overlapping distribution patterns of congenerics. We directly compared nutritional requirements and tolerances that influence the fundamental niche of mule (Odocoileus hemionus) and white-tailed deer (O. virginianus), which occur in allopatry and sympatry in similar realized ecological niches across their ranges in North America. Digestible energy and protein requirements and tolerances for plant fiber and plant secondary metabolites (PSMs) of both deer species were quantified using in vivo digestion and intake tolerance trials with six diets ranging in content of fiber, protein, and PSMs using tractable deer raised under identical conditions in captivity. We found that compared with white-tailed deer, mule deer required 54% less digestible protein and 21% less digestible energy intake per day to maintain body mass and nitrogen balance. In addition, they had higher fiber, energy, and dry matter digestibility and produced glucuronic acid (a byproduct of PSM detoxification) at a slower rate when consuming the monoterpene α-pinene. The mule deers’ enhanced physiological abilities to cope with low-quality, chemically defended forages relative to white-tailed deer might minimize potential competitive interactions in shared landscapes and provide a modest advantage to mule deer in habitats dominated by low-quality forages. 
    more » « less
  4. Moratelli, Ricardo (Ed.)
    Abstract While museum voucher specimens continue to be the standard for species identifications, biodiversity data are increasingly represented by photographic records from camera traps and amateur naturalists. Some species are easily recognized in these pictures, others are impossible to distinguish. Here we quantify the extent to which 335 terrestrial nonvolant North American mammals can be identified in typical photographs, with and without considering species range maps. We evaluated all pairwise comparisons of species and judged, based on professional opinion, whether they are visually distinguishable in typical pictures from camera traps or the iNaturalist crowdsourced platform on a 4-point scale: (1) always, (2) usually, (3) rarely, or (4) never. Most (96.5%) of the 55,944 pairwise comparisons were ranked as always or usually distinguishable in a photograph, leaving exactly 2,000 pairs of species that can rarely or never be distinguished from typical pictures, primarily within clades such as shrews and small-bodied rodents. Accounting for a species geographic range eliminates many problematic comparisons, such that the average number of difficult or impossible-to-distinguish species pairs from any location was 7.3 when considering all species, or 0.37 when considering only those typically surveyed with camera traps. The greatest diversity of difficult-to-distinguish species was in Arizona and New Mexico, with 57 difficult pairs of species, suggesting the problem scales with overall species diversity. Our results show which species are most readily differentiated by photographic data and which taxa should be identified only to higher taxonomic levels (e.g., genus). Our results are relevant to ecologists, as well as those using artificial intelligence to identify species in photographs, but also serve as a reminder that continued study of mammals through museum vouchers is critical since it is the only way to accurately identify many smaller species, provides a wealth of data unattainable from photographs, and constrains photographic records via accurate range maps. Ongoing specimen voucher collection, in addition to photographs, will become even more important as species ranges change, and photographic evidence alone will not be sufficient to document these dynamics for many species. 
    more » « less
  5. Abstract How intensely animals use habitat features depends on their functional properties (i.e., how the feature influences fitness) and the spatial and temporal scale considered. For herbivores, habitat use is expected to reflect the competing risks of starvation, predation, and thermal stress, but the relative influence of each functional property is expected to vary in space and time. We examined how a dietary and habitat specialist, the pygmy rabbit (Brachylagus idahoensis), used these functional properties of its sagebrush habitat—food quality, security, and thermal refuge—at two hierarchical spatial scales (microsite and patch) across two seasons (winter and summer). At the microsite and patch scales, we determined which plant functional traits predicted the number of bites (i.e., foraging) by pygmy rabbits and the number of their fecal pellets (i.e., general habitat use). Pygmy rabbits used microsites and patches more intensely that had higher crude protein and aerial concealment cover and were closer to burrows. Food quality was more influential when rabbits used microsites within patches. Security was more influential in winter than summer, and more at Cedar Gulch than Camas. However, the influence of functional properties depended on phytochemical and structural properties of sagebrush and was not spatiotemporally consistent. These results show function‐dependent habitat use that varied according to specific activities by a central‐place browsing herbivore. Making spatially explicit predictions of the relative value of habitat features that influence different types of habitat use (i.e., foraging, hiding, and thermoregulating) will improve how we predict patterns of habitat use by herbivores and how we monitor and manage functional traits within habitats for wildlife. 
    more » « less